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TECHNICAL MEMORANDUM 1251

ON THE FORMATION OF SHOCK WAVES IN SUBSONIC FLOWS WITH LOGAL
SUPERSONIC VELOCITIES#*
By F. I. Frankl

In the flow about a body with large subsonic veloclty 1f the
velocity of the approaching flow 1ls sufficlently large, regions of
local supersonic velocities are formed about the body. It is
knowvn from experiment that these regions downstream of the flow
ere always bounded by shock waves; & contimmous transltion of the
sﬁpersonic velocity to the subsonic under the conditions indicated
hes never been observed.

A similar phenomenon ocours in pipes. If at two cross sections
of the pipe the velocity 1s subsonic and between these sections
regions of local supersonic veloclty are formed without completely
occupying a single cross section, these regions are always bounded
by shock waves.

A theoretical explanation of this phenomeon bas as yet not
been glven. In 1932, the author (reference 1) constructed an
example of a plane parallel continous (thet is, without shocks)
adiebetic flow in a channel conbtaining a local supersonic region
in contect with one of the walls. The attempt at the experimental
reslization of this flow gave, however, a negative result (ref-
erence 2). Since that time, meny theoretical examples have been
constructed by various authors but not one of them has been reallzed
experimentally,

The opinion hes also been. expressed that small supersonic
regions without shock waves were possible but for too large
dimensions & continuous flow becemes impossible in view of the
superposing on each other of Mach lines of the same family.

This essumption was, however, refuted in the recent work of
A. Nikolskii and Tagenov (reference 3). (See equation (2.26) and
theorem 8 in reference 3.)

*"K Obrazoveniu Skachkoir Uplotnenia v Dozvukovykh Techeniakh
s Mestnyml Sverkhzvukovymi Skorostiami." Prikladnaye Matematika 1
Mekhanike, Vol. XI, 1947, pp. 180-202.
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It 1s shown herein that the problem of finding a continuous
flow about an arbitrary contour with local supersonic velocities
1s not legitimately posed and, generally speeking, has no solution.
The conclusions herein are based on a single hypothesils having the
character of a unigueness theorem. (See footnote 1.)

Although a contour may be given, which for a given velocity
at infinity may have a flow about it with supersonic velocities,
other contours exist very close to it (not only as regards the
coordlnates of the corresponding points but alsq the slopes, curva-
tures, and so forth) for which the problem hes 'mo solution. It
therefore follows thet if, in general, there may at all be found
a steady flow about an arbitrary given contour with locel supersonlc
velocitles then thils flow must be accompanied by shock waves.

This assumption is now considered ln greater detail. Only
continurous adiabatlec. irrotational study flows wilth constant entropy
and constent tobtal energy are considered. The discussion is
restricted to the case of flow about bodies inasmuch as flows in
pipes can be snalogously considered.

The considerations are greatly simplified if it is assumed
that the profile is an oval with two axesz of symmetry, these axes
being taken &s the axes of coordinstes. It is assumed that the
veloclity of flow at Infinity is lese than the velocity of sound
and parellel to the x-axis and also that the x-axis 1s a streamline,

lAB is correctly remarked by Nikolskil and Teganov, the exlsting
attempts to solve this problem are based on processes of successive
approximations, the convergence of which have not been shown. (See,
for example, reference 6.) Teylor, who likewise tried to solve this
problem by successive approximatlons, showed the practicel con-
vergence of the process In the presence of supersonic velocities
(reference 7). Hence, from these works there does not follow the
existence of a solution and the attempts to make use of these doubt-
ful approximete solutions for deriving a certain critical Mach number
below which the problem is solved (without shocks) is unfounded.

That the problem is not solved for arbitrary contours follows
also from theorem 6 of Nikolskii and Teganov. This theorem states
that subsonic flows without shocks with superscnic regions sbout a
body consisting of stralght segments are impossible. Even in the
presence of the very smallest straight segments of the contour at
the supersonic region, flow without shocks 1s impossible.
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(in other words, the problem is restricted to the case of the flow
about & contour without circulation).

It is now assumed as & hypothesis that such flows must be
symmetrical not only with respect to the x-axis but also with
respect to the y-axis. In fact, exemples contradicting this
assertlon are not known. Flows that are nonsymmetrical with
respect to the y-axls are known 'only in the case of the presence
of shock waves.

A flow of the kind considered about the contour S +that has at
infinity the velocity U 1s now assumed.

Let the reglons of supersonic velocities be bounded by the
arcs ABC and A'B'C' (fig. 1). Let BD and BE be Mach lines
ending at the point B.

Because the flows in all the four quadrents formed by the x-
and y-axes are the seme, only the flow in the quedrant x <0 and
¥>0 are considered. The boundary conditions for the stream
function are

(1) VY =0 on the segment =~ oF of the x-axis
(2) Y =0 on the arc FH of the contour S
(3) O/dx = 0 on the segment He of the y-axis
(4) The velocity at infinity is equal to U.

In order to realize these boundary conditions, the following
mechanical model is epplied. ILet the segment -oF of the x-axis
and the arec FH of the conbour be taken as rigid walls; on the
segment Heo of the y-axls, an infinite chain of infinitely
closely dlstributed pumpe controlled by en automatic regulator
are set up. This regulator is to maintain the velocity at infinity
at a gilven level and moreover is not to permit the formation of
flows on the y-axis that are parallel to this axis (condition 3).

If the shape of the wall at the segment DHE is changed, it
1s evident that the effect of thils change cannot be propageted to
the left of the Mach line DB. In the same way in this region to
the left of the Mach line DB, the effect of & change in the working
regime of the pumps cannot be propagated to the segment HB pro-
vided they continue to meintalin the velocity at the segment.” Hence,
the flow in the part of the fileld lying to the left of the Mach
line DB is unlquely determined on the basis of the boundary
conditions _
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') ¥ =0 on the segment -oF of the x-axis
") Y =0 on the arc FD of the contour S

') JY/dx = O on the segment Bo of the y-axis

'y The velocity at infinity is equal to U.

1258,

On the basis of symmetry considefations, thls result is carried
over to the remaining three quadrants.

Hence, the shape of the arce D'FD and E'GE of the contour
S completely determines the flow outside the closed curve
FDBEGE'B'D'F formed from the two arcs of the contour S end the
four Mach lines. .

Inesmmch as the distributione of the velocliies on the Mach
lineg BD and BE 1in the curved quadrangle DBEKD are known
where DK and EK s&are the remaining two Mach lines passing through
D and E, the velocity field 1s entirely determined.

The arc DE of the contour, however, cannot be chosen inde~
pendently of the shapes of the arca D'FD and E'GE. The smallest
chenge in it makes the solution of the given boundary problem
impossible.

Under actual conditlons there always exlst, of course, small
disturbances. Hence, the flow about the contour of the type con-~
sidered of a continuous (without shocks) subsonic flow with local -
supersonic velocities is in general impossible.

Although the posing of the problem of the continmuous f£low
about a prescribed contour in the presence of supersonic regions
is consldered invalid, 1t is probable that for sufficlently wide
conditions the exlstence and uniqueness theorems of the continous
flow hold for a profile pertly given in this sense.

An exact formulation of the existence and uniqueness theorems
proposed is now glven, removing the restriction that the flow
sbout the contour is symmetricel about the y-axis (fig. 2).

In the x,y-plene, let the contour S be given, vhich 1s
symmetrical about the x-axis.

All sdebletic continous steady flows of e gas satlsfying the
conditions ere considered: :

(a) At infinity, all the particles of the gas have the same
gtate persmeters and velocity U parallel to the x-axis.
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(b) The flow is symmetrical with respect to the x-axis.
Then elther one of the following possibilities holds:

(A) There exists one and only one flow determined everywhere
outside the contour S and satisfying conditions (2) and (b).

(B) If there is no such flow, then there exists a flow deter-
mined outside the closed curve FDBEGE'B'D'F, where D'FD and
E'GE are arcs of the contour S and BD and BE, B'D', and
B'E' are palrs of Mach lines symmetrical with respect to the
x-axis; the velocity vector at the polnt B must form with the
x-8xis an arbitrarily (within certain limits) given angle 6. The
flov must, of course, satisfy the conditions {a) and (b).

On the contour S it is necessary to impose certain smooth-
ness conditlons, which must be further specified.

In case (B), the flow continues (with the aid of the solution
of the problem of Goursat) uniquely in the region included between
the Mach lines BD and BE and correspondingly between B'D' ard
B'E'. The flow thus passes & certain contour S coinciding with
the contour S% along the arcs D'FD and E'GE.

The aycs DE and D'E' of the curve S* are uniquely deter-
mined and, in general, differ from the corresponding arcs of the
contour S.

If this preceding formilasted exlstence and unigueness theorem
(or at least uniquenes) is proved, then in partilcular there is
proven the nonvalidity of the statement of the problem of continuous
adisbatic steady flow with local supersonic regions sbout a body.

If the boundary problem (B) is solved for a certain contour S¥%,
then for the neighboring conbtour S it may eesily be mapped on the
plane of the hodograph (fig. 3).

Let 1n be the velocity function introduced in reference 4.

lLet the contour . S*¥ correspond to the stream function V¥
and the contour S to the stream function V¥ = y* + &Y. The
functions V*, V¥, and &Y satisfy the equation

T e—

Py Py v
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The lines EG and DF on figure 3 correspond to the arcs
EG and DF of the contour S%, +the corresponding points having
the same notation. The lines BE and BD are characteristilcs.
The points G and F on figure 3 are infinitely removed (the
coordinates are - n/2, +», and + /2, +o, respectively). The
point 17y on the f-axis corresponds to the velocity U of the
flow at infinity. The boundary conditions for 8¢ will then dbe
the following:

1. On the lines GCE and TFAD

M&W+N%y+?%§,;—b=f(ﬂ)

where M, Ns end P- are functions of 1n depending on the contour

S*¥ and f£(q is & function depending on the difference between the
contours S and S¥%,

2. On both sides of the sequent (no +o) along the n-axis,
&y = O,

3. On approaching the point (O,ng), the function &Y approaches

infinity.

4, Ag 1o, the magnitude sV approaches sufficlently rapldly
to zero.

The close connection of thls problem with the problem of
Tricomi (reference 5) and other already solved problems for the
equations of the mixed elliptico-hyperbolic type speaks in favor
of the exlstence and unigueness of 1ts soclution.

Translated by S. Relss,
Natlonel Advisory Committee
for Aeronautics.
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